Acoustic propulsion of nanorod motors inside living cells.

نویسندگان

  • Wei Wang
  • Sixing Li
  • Lamar Mair
  • Suzanne Ahmed
  • Tony Jun Huang
  • Thomas E Mallouk
چکیده

The ultrasonic propulsion of rod-shaped nanomotors inside living HeLa cells is demonstrated. These nanomotors (gold rods about 300 nm in diameter and about 3 mm long) attach strongly to the external surface of the cells, and are readily internalized by incubation with the cells for periods longer than 24 h. Once inside the cells, the nanorod motors can be activated by resonant ultrasound operating at 4 MHz, and show axial propulsion as well as spinning. The intracellular propulsion does not involve chemical fuels or high-power ultrasound and the HeLa cells remain viable. Ultrasonic propulsion of nanomotors may thus provide a new tool for probing the response of living cells to internal mechanical excitation, for controllably manipulating intracellular organelles, and for biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustically propelled nanoshells.

Herein we report a new design for acoustic nanoswimmers, making use of a nanoshell geometry that was synthesized using a sphere template process. Such shell-shaped nanomotors display highly efficient acoustic propulsion on the nanoscale by converting energy from the ambient acoustic field into motion. The propulsion mechanism of the nanoshell motors relies on acoustic streaming stress over the ...

متن کامل

Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave e...

متن کامل

Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.

The recent discovery of fuel-free propulsion of nanomotors using acoustic energy has provided a new avenue for using nanomotors in biocompatible media. Crucial to the application of nanomotors in biosensing and biomedical applications is the ability to remotely control and steer them toward targets of interest, such as specific cells and tissues. We demonstrate in vitro magnetic steering of aco...

متن کامل

Could cell membranes produce acoustic streaming? Making the case for Synechococcus self-propulsion

Sir James Lighthill proposed in 1992 that acoustic streaming occurs in the inner ear, as part of the cochlear amplifier mechanism. Here we hypothesize that some of the most ancient organisms use acoustic streaming not only for self-propulsion but also to enhance their nutrient uptake. We focus on a motile strain of Synechococcus, a cyanobacteria whose mechanism for self-propulsion is not known....

متن کامل

Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors

Artificial micromotors, operating on locally supplied fuels and performing complex tasks, offer great potential for diverse biomedical applications, including autonomous delivery and release of therapeutic payloads and cell manipulation. Various types of synthetic motors, utilizing different propulsion mechanisms, have been fabricated to operate in biological matrices. However, the performance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 53 12  شماره 

صفحات  -

تاریخ انتشار 2014